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1. INTRODUCTION

It is well known in slow ship theory that the usual linearized free surface con-
dition is not applicable when obstacles are considered which beam length ratio
(B/L) is not sufficiently small. In that case, the linearized theory leads to
the so-called "low Froude number paradox" for small values of the Froude numbex
(Fn® = U%/gL << 1), as shown f.i. by Salvesen [12] and pagan [3]. The assumption
that the velocity field is only a small perturbation of the unperturbed incoming
field does not hold good then.

This problem has been studied by several authors resulting in proposals for a
quasi-linear free surface condition, based on the assumption that not the unper-
turbed incoming velocity field, but the so-called "double body solution" (rigid
wall solution) has to be considered as a first approximation for the velocity
field. That assumption, confirmed by observations from experiments (f.i. Baba
[1]), can also be made plausible with mathematical arguments, based on asymp-
totic analysis (with the Froude number as the small parameter), as shown by
Hermans [6] and [7]. That approach is also followed in this paper, but the free
surface condition derived here will also contain terms concerning the first
ordexr derivatives of the perturbation potential along the free surface. These
terms, which are neglected by authors like Ogilvie [11], Maruo [9] and [101,

and Baba [2] are similar to the ones in the work of Eggers [4]. It will be shown,
for the two-dimensional case, that these terms have considerable influence on
the behaviour of the solutions and may therefore not be removed from the free
surface condition.

In section 2 the nonlinear problem is formulated and a "boundary-layer' approach
is shown, resulting in a superposition of the double body solution and a pertur-—
bation potential as a first approximation for the wave solution of the total
problem.

In section 3 a quasi-linear boundary condition is derived for this perturbation

problem. The two-dimensional problem is treated as an example in section 4. In
* . .
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order to show the influence of the terms mentioned above, a more or less
generalized free surface condition is used there.

In section 5 some results for the two-dimensional case are shown. Also there,
the effect of violating Laplace's equation, which is inherent to the derivation
given in section 3, is shown to be negligible in the final results.

Finally some conclusions are presented in section 6.

2. THE NONLINEAR PROBLEM AND THE BOUNDARY-LAYER APPROACH

An obstacle (ship) moves with velocity U at the free surface of an infinitely
deep fluid. A cartesian coordinate system is chosen fixed on the body. With res-
pect to this system the body is at rest and seems to be placed in a uniform
stream with U as the magnitude of the velocity at infinity. A steady wave pattern
can be observed attached to the body. The x-axis is chosen along the free sur-
face at rest in the direction of the unperturbed incoming velocity field. With
the y-axis perpendicular to the free surface at rest, and positive in upward

direction, the z-axis has to be chosen along the free surface (see Fig. 1).

—
['al
—

The position of the free surface Sf is given by:

y = h{x,2) ‘ (2.1)

The fluid is assumed to be inviscid and incompressible. A velocity potential

®(x,v,2) may then be introduced, related to the velocity vector u by:
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u = gradd (2.2)
The law of continuity gives:

A® = 0 for y < h(x,z) (outside the body) (2.3)
On the body's boundary Sb the kinematic condition holds:

V® . n=0 on Sb (2.4)

On the free surface both a kinematic- and a dynamic condition have to be ful-

filled. Disregarding surface-tension effects, these two nonlinear conditions are

given by:
dh +dh -9¢ =0 on y = h(x,z) (2.5)
X X zz v
Loyt agn+l(e2+o2+ @2) on y = h(x,z) (2.6)
2 2 \\'x v z, !

The condition at infinity, which is:
d + Ux + "wave solution" for I§J - (2.7)

has to be combined with a proper radation condition, which states that no waves

are permitted far in front of the body.

For a fixed scale I (which depends on the body's geometry), small values of the
Froude number coincide with small velocities U.

A first asymptotic expansion for ¢ and h can be made:

o
Ii

<I>O+<I>1+CI>2+...
(2.8)

h=ho+hl+h2+...

with @i ~ O(Qi_l) and hi ~ O(hi—l) for U » 0.
With & ~ O(U) as a consequence of the conditions at infinity it follows from

(2.6) that h ~ O(Uz). Using Taylor—expansions around y = 0 the following problems

can be formulated, after substitution of the expansions of (2.8):
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0
®Oy =0 y=20 (2.9)
V@O n =20 on Sb
@0 -+ Ux for IEJ -
A@i =0 vy £0
D, =P (sz‘) y =20
1219 W 1 (2.10)
y@i .n=20 on 8
@i + 0 for IEJ -+ ®

The functions hi(x,z) may be computed afterwards, while the functions Pi(x,z)
contain terms which may be computed from the lower order terms of the expansions.
Because of the fact that the second order derivatives have disappeared from the
free surface condition, the radiation condition had to be dropped. The solutions
constructed in this way are "non-wave" solutions. The problem turned out to be

a singular perturbation problem. There is need for a boundary-layer approach,
defining a thin layer beneath the free surface of order O(Fnz), in which a wave
solution has to be constructed.

The expansions of (2.8) may be used to construct an "outer"-solution.

In [6] and [7] Hermans worked out a matching procedure with the following re~
sults: Firstly, in order to get a well-posed boundary value problem for the

"inner"-solution a mixed approach has to be used:

inner outer
) =&

+ 4 (2.11)
with ¢ a perturbation potential only valid in the boundary-layer.

Secondly, only @0 can be incorporated in the "outer"-solution (in contrary to
the ideas of Keller [87), because this mixed approach leads to boundary value

problems for the functions @i (i 2 1), different from the ones in (2.10).

The solution for @O (problem (2.9)) is the well known double body solution,
which will be denoted by ¢E(X,Y,Z) from now on.

The matching condition, using qu(x,o,z) = 0, now takes the form:

¢y *+ 0 outside the boundary layer (2.12)

which is a natural condition for a wave solution.
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3. DERIVATION OF A QUASI-LINEAR FREE SURFACE CONDITION

The introduction of a boundary layer suggests that a coordinate-stretching
should be carried out. However, this is not done here in order to avoid mis-
interpretations of the order of magnitude of the derivatives of q&.

The only assumption for the perturbation potential made beforehand is, that

¢ A‘o(¢}) for U + 0. Quadratic terms in ¢ may then be neglected after the sub~

stitution:
¢ = mr + ¢ (3.1)

in the expressions of section 2.

For the dynamic free surface condition (2.6) this results in:

1
nix,z) =— {U? - @ - > - 20,9, — 20,9, - 29,9} ony = hixz)

(3.2)

With h ~ O(Uz) for U -+ 0, at every place where ¢, occurs, a Taylor-expansion

is used around y = 0 (¢E is only valid for y < 0O!). Taking only the lowest
order terms into account, and using ¢Ey(x’0'2) = 0:

h(x,z) = hr(x,z) + hw(x,z)
with

_ 1 2 2 2
h (x,2z) = o {u @, (x,0,2) wrz(x,o,z)} (3.3)
-1
h (x,2) = 5 {o,, (x:0,2)¢_(x,h,z) + wrz(x,0,2)¢z(x,h,z)} (3.4)

One should expect that now also a Taylor expansion for ¢ around y = O has to be
made, in order to express h(x,z) explicitly (as is done by Eggers [5]). However,
there are two strong arguments against that approach. The first gquestion is,
whether it is asymptotically correct to truncate such an expansion after one or
two terms. When a wave solution for ¢ is looked for, with wavenumber of 0(g/u?),
it is not clear beforehand, that for instance a term like h2¢xyy may be neglected
compared with h¢xy. The second objection is related to the results achieved by
this approach. For the two-dimensional case, the free surface condition given by
Eggers [5] reads:

i ;’_ 2 _ _1__ 2 ' _
¢Y " g{[ 2 Prx 7 U ] ¢xx + 3(prxtprxx¢x} D(x) .
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The point at the free surface at whichcgix = %—Uz is a singular point for

this equation, because the coefficient of ¢xx becomes zero there. However, from
physical point of view it looks rather strange that special attention should be
paid to a point somewhere in the free surface flow before and behind the ob-
stacle.

For that reason, a different approach is used here. Firstly, observing that hw
is proportional to ¢, a Taylor-expansion is made.around y = hr(x,z), after which

a coordinate transformation is carried out:

x' = x
y' =y - h (x,2) (3.5)
Z' =z

Taking only into account the lowest order terms, this gives for (3.4)

L} ! —-_1 1 —
h (x', z') = g{‘prx' ber t @, by} ony' =0 (3.6)

Finally, the whole procedure discussed above is repeated for the kinematic free
surface condition (2.5). The expressions for hr and hw ((3.3) and (3.6)) are
used, while for a convenient notation the accents for ¥, Y and z have been drop-
ped. ‘

The final result is:

1, 9 2
c‘Jy + g { (Drxqux *2 (Drx(przcbxz * (przd)zz} +

+ 200 +g o0} o+ (3.7)

rxz rX'rzz X

1
E{ 3‘prx(prxx

Lprxx 1 ¢z = D(x,2) ony=0

1
E{ 3mrz(przz * 2qj:.rx(prxz * Pry

with:
D(x,z) = ji—[(p (x,0,2)h (x,z)] + EL—[(D (x,0,z2)h_(x,2)]
! 9% -~ rx ! r ! 3z - xz 'Y r !

and hr(x,z) as in (3.3). The wave elevation hw(x,z) can be computed afterwards,
when ¢ is known, by (3.6).

The guasi-linear free surface condition has to be combined with Laplace's
equation, which is, in the lowest order tems, not affected by the coordinate

transformation:
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Ap = 0 vy <0 (3.8)

It should be stated here that in (3.8) higher order terms, resulting from this
transformation are neglected. In section 5 it will be shown that, for the two-
dimensional case, corrections can be made in order te fulfill the exact Laplace
equation. These corrections lead only to negligible contributions to the wave
resistance there.

The free surface condition (3.7)‘differs from the ones given by most other
authors by taking into account the last two terms in the léft—hand~side. After
the experience with the two-dimensional case it may be concluded that these terms
are essential for construction of the correct solution for ¢, even when ¢ is a
wave solution! It is expected that omittance of these terms leads to problems
with the determination of higher order terms of ¢, similar to those that arise
in asymptotic analysis of ordinary differential equations, when secular terms

are involved.

4. THE TWO-DIMENSIONAL PROBLEM

In this section a totally submerged cylindrical body of infinite length is con-
sidered. With respect to the original x~y coordinate system, the body is at rest,

and placed in a uniform stream (see Fig. 2).

The restriction is made for the body's centre to be situated as deep under the
free surface, that the body's contour lies totally "outside" the boundary layer.
The body's boundary condition, already satisfied by wr, may then be dropped from

the problem for the perturbation potential ¢.
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With now x and y the transformed coordinates (see section 3), ¢ has to be a

solution of:

A
o

Py + by = O y

1 2 ~ .
C9, = {o o+ 39,,0,,,0,} = D) on y =0

with

(4.1)
)
D(x) = axl:hr(x)wrx(X,O)]
and
R ST B
h (%) = Zg{u 0, (x,0)}
- —
¢x 0 for X > -
¢ -+ "wave-solution" for x -+ +o
¢y * 0 "outside" the boundary layer.
The wave profile is given by:
h(x)*-—i(n (x,0)¢ (x,0) | (4.2)
W T T g Tex RrYIP :

The free surface condition of (4.1) can be simplified after introduction of:

2
(Drx (x,0)

Alx) = — g (4.3)

In order to make clear the influence of the term 3¢Exq}xx¢x in this condition,
the factor 3 is replaced by 20. The more general problem considered here is

problem (4.1) in which the free surface condition is replaced'by:
] - —
¢y + A(x)¢xx + oA (X)¢X =D(x) ony=0 (4.4)

Keeping in mind that o should be 3/2.

The probiem is solved with the help of Green's theorema, applied to the rectangu-
lar domain Dg of Fig. 3, with L3 "outside" the boundary layer.

A Green's function G(§, 1; x,y) is introduced as a solution of Laplace's equa-
tion, representing a source of unity strength at § = x, n = y, where it behaves

like:
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1
Gmioin [E - 0%+ (- 2T

(4.5)

In order to get rid of integrals along L2, L3 and L4, and part of the integral

along Ll’ a suitable problem to be considered for G is:

G + G =0 <0
g€ T mn n
a? a
G +——[X] —a=zx [A'6] =0 n=20
n 2 dg
ag
G —+ "wave solution” £ + —o
¢ +0 £ > 4o

Gn + 0 "outside" the boundary layer

(4.6)

Notice, that G has to be a "wave-solution" for £ -+ -, which will lead to the

proper behaviour of ¢ for x - +«.

Application of Green's theorema, with careful use of all the properties of ¢

and G, leads finally to:
+c0
ch(x,y) = - [ D(EIG(E,0; x,y)dE
-0
with
{c =—é— for y =20
c=1 for y <O

- 33 —

(4,7)
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A solution for G may be constructed with the help of complex analysis.

Taking:

G(E,nix,y) = RelF(g;2)] (4.8)
with

z =& + in and z = x + iy

and using a complex continuation for ):

ME) = Sl Em - ie (Em]? (4.9)

1
g

the function F has to be analytic in the lower half plane, except at C =2z,

where:

F(Ziz) ~ 3= log (L - 2) (4.10)

while at the real axis, F has to satisfy:

2
m{i [AF] -
ag?

a . d -ax _
ar [(F] - ia T [55 F1} =0 (4.11)

F can be constructed by the same method as used in [7]. For this problem the

result is given by:

’ -1 g t
1 -2z A0 - - .
F(Tiz) = 5o 19 (i oy - Al +°f°{x (t)log (t-z)expli £

ds
T(s) 1} at

(4.12)

in which the path of integration should be chosen as in Fig. 4 in order to get

the proper wave behaviour for G.

Using (4.2) and (4.7) the expression for the wave elevation becomes:

2 T
h (x) = T [ p(&)e, (E,0;x,00a8 (4.13)
g -0

From (4.12) it can be derived that:

' -1 © o £
. = paf{ZA__(8) A () . 7 ds
GX(E,O,X,O) Ref pry é [t 7 1.07] %P [i é " s) Jat} (4.14)
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N

The notation x + 1.0 is used here, to show that the point approached the real
axis from the upper half plane.

Although it can be shown that the wave amplitude, according to these expressions,
is exponentially decaying with increasing wave numbexr g/Uz, far behind the body,
it is interesting to study the dependence on o of these solutions, as will be

shown in the next section.

5. SOME RESULTS AND A CORRECTION TERM FOR LAPLACE'S EQUATION

It can be seen that the expression for Gx of (4.14) strongly depends on the
choice made for the coefficient o. Especially when low values of A occur at the
free surface, the wave amplitude may differ in oxder of magnitude when different
values of o are considered.

The results shown in this section, are those for a circular cylinder with its
centre at x = 0, y = -2a.

The double body solution then may be obtained numerically; considering a source
distribution at the cylinder's contour and at its mirror-image with respect to
the x-axis. The functions A(x) and D(x) can be calculated from this solution. The
function Gx can also then be calculated numerically, with the neighbourhood of
t = x treated very carefully.

Results for the wave amplitude hw are shown in Fig. 5, for o = 3/2 and several
values of the Froude number defined by Fn = v?/(aq).

The total free surface elevations hr + hw are shown in Fig. 6.

In order to calculate the wave resistance, the function hw has to be evaluated
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I T T T )
h /a
w of o =3/2
0
-0 | Fn=0258
Fﬂ:021$3
Fn=0229
-02 | I ] 1 1
-2 -1 0 i 2 3 4
' >
tig.5 x/a
02 | T T T 1
(hrqhw)/c.
01 o =3/2
0
-0 Fn=0258 _
Fn:021.3
Fn=0229
-02 L | | ! I
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for lafge values of x. For that aim the representation of Gx in (4.14) is not
very useful. A more suitable representation can be found after construction of

a Green's function, for the original problem (4.1) with D(x) = 0, &(x,y;&.n),

and using the symmetry principle of Green's functions: G(E,nix,y) = G(x,yiE.n)-
(See f£.i. [7D].
The result for GX:
- x ,0-1 t
~A (%) A (t) . ds
. = 5.1
GX(E,O,X,O) Rre{ ey _i (= (e+1.0)] expl[ i £ A(s)] at } ( )
Now, for large values of % (x - ®) only the contribution of the pole at t = £
remains and:
¢ a~1 ) g ds
G (E,0ix,00 - 2\ Y (x) A% " (E)Re{expli [ 1} (5.2)
X % >\(S)
Introducing a phase function:
X
ds
= 5.3
S(x) = | (o) (5.3)
0
g u?
and observing that S(x) +~63-x for x -+ © Dbecause of A(x) > E—-, hw(x) is
finally written as:
hw(x) ~ A cos[k(x - c)] (5.4)

-4y
with k = 25 and A =| —

U (%Zﬁa [ D(E)Aa_l(E)GXP[iS(E)JdE| for large values of x

The wave resistance coefficient, based on momentum analysis, is introduced as:

i%~A2 (5.5)

£
N
c

with A as in (5.4).

The dependence of this coefficient on o is shown in Fig. 7, for the same cir-
cular cylinder, as a function of Fn.

Now some remarks should be made about the violation of Laplace's eguation. As
a consequence of the coordinate transformation the Laplace equation should read
in the new coordinates (two-dimensional):

" ] ] 2 —
by + Oy * (RO, * 2010+ (B%0 ) =0y <0 (5.6)

XX vy
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02

- %:3/2 -
=1 \
x=1/2

ol | «=0 —_~_—\\\\\\\\ .

020 Q23 026 029 032 035

In the problem solved for ¢, (4.1), the term between brackets is neglected.
Locally, this is justified by the fact that hr ~ O(Uz) and in the neglected term
only second- and first order derivatives occur, which may be compared with the
first part of the equation (which seems a better procedure than truncating a
Taylor-expansion as shown in section 3).

Although it is locally a good argument to neglect this term, it has still to

be shown that also its influence in the final results is small.

For that reason ¢ is written as:
¢ = ¢O + ¢l (5.7)
With ¢O the solution of problem (4.1), as given in section 4, resulting in a

wave profile hw as given in (4.13). In order to fulfill the exact Laplace equa-

tion (5.6), ¢1 has to be a solution of the eguation:

Pgx ¥ Pyyy = 000Y) ¥y <0 (5.8)
with
2
o - _ n - 1 - [ .
(3, 7) npdoy = 2 hibg, = () e
The boundary conditions are the same as in 4.1, but now with D(x) = 0.
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For this problem the same Green's function may be used with as result:

cb, (x,y) = [[ o(EmGE,Mix,y)dEAn (5.9)
Dg
with
c=1 for y <0
c = %- for y =20 and G given by (4.8)

The correction for the wave height is:

—ZX%(x)
n, (x) = ==X ([ g(g,me_(E,nix,0)dEan (5.10)
wl X
Yg  Dg
Observing that Gx (see (4.14)) is exponentially decaying in negative y~direction,
the lowest order term of (5.10) may be obtained by partial integration with

respect to n:

35 o
~ 2 £ 5y 6(E,00G (E,05%,00dE (5.11)

g =00

hwi(x)
Recause of A ~ O(%ﬁ, ¢O ~ A{x)exp[ikH(x)] (see previous section), hence
0 ~ kAexp[ikH] and GX ~ 0(k) (see (4.14)), the integrand is proportional to
kAexp[ikH]. Integration leads to:

—1—_A exp [ikH]. (5.12)

B )~ g

With the same assumption for ¢0, the wave profile calculated in the previous

section is estimated as:

;i .
() = 2AZL g oA exp [ika] (5.13)

h
0
W /g

According to this result it is concluded that the correction leads only to a

higher order contribution for the wave amplitude, and may indeed be neglected.

6. CONCLUDING REMARKS

A quasi-linear free surface condition has been derived, valid for low Froude
numbers. The double body potential was used as a first.approximation for the
flow field. The only restriction made for the perturbation potential was that

quadratic terms were small enough to be neglected. The incorporation of terms
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with the first order derivatives of the perturbation potential, neglected by
mést other authors, did not make the analysis more difficult (at least for the
two-dimensional case). In fact, they were essential for obtaining the correct
order of magnitude of the wave solution, as can be seen in the results for the
wave resistance in section 5. It is expected that these terms are also impor-
tant in the three-dimensional case. For that reason, the free surface condition
given in section 3 seems to be the best choice in slow ship theory. When the
ray-method is applied for the three-dimensional case the above mentioned terms
lead to some additional tefms in the transport equations. However, the use of
the ray-method in slow ship theory is yet not developed far enough to incor-
porate also the transport eguations. At the moment it seems difficult enough to
solve the eikonal equation in case of low Froude numbers.

Finally, it should be stated that the use of a coordinate transformation as
carried out in section 3 is not only justified by the minor effects in the final
results of the correction terms in section 5, but also by the fact tﬁat a
singular point in the final free surface condition, is a stagnation point of the
double body flow (when it occurs) at the free surface. From physical point of
view this seems to be more acceptable than the occurence of such a singular

point elsewhere which may result from the use of Taylor-expansions as mentioned

in section 3.
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