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SUMMARY

The paper is concerned with the study of the effect of the randomness of material parameters on mean wave propagation
in a semi-infinite viscoelastic medium. The medium considered in this paper is a configuration of a randomly non-
homogeneous layer overlying a homogeneous half-space and is loaded harmonically on the top surface. The method used
is that of Karal and Keller and is based on the idea of fundamental matrix and Bourret approximation. The integro-
differential equation obtained in this paper is solved by the Laplace transform method. By using boundary and
continuity conditions the mean wave solution is obtained. Numerical results show that the correlation functions, which
introduce long-range interactions, can be the source of the wave amplification.

. INTRODUCTION

The properties of waves propagating in a randomly non-homogeneous viscoelastic medium are governed by
differential equations whose coefficients are random functions of space variables.? In this paper we are
dealing with a displacement field related to a stress field by means of the equation of motion, the constitutive
equation and the boundary conditions.

In engineering practice, in order to describe the macroscopic behaviour of the random medium, we do not
need the displacement field itself, which exhibits random fluctuations, but rather some of its statistics. In the
simplest case we may ask for the mean field. Although we are mostly interested in three-dimensional
boundary-value problems, it is sometimes desirable to reduce the number of dependent and independent
variables of the deformation field by making certain simplifying assumptions. The simplest physical regime is
that in which stresses depend upon a single Cartesian coordinate, say z (see Figure 1).

The physical problem we wish to solve reduces to determining the motion of the interior of a randomly
non-homogeneous viscoelastic semi-infinite medium when a harmonic pressure pulse is applied to the top
surface. This problem arises naturally in the study of dynamically loaded structures.® Although in recent
years the research in the area of dynamic soil-structure interaction was remarkably successful in explaining
the effects of various factors on the behaviour of a deformable body,*? the steadily increasing precision of
measurements and observations brought forth the need for modification of certain points in the existing
theories.* " The unquestionable fact is that a real soil is a kind of medium whose properties are very complex
and are not known precisely. Many investigators have been aware of the need to account for uncertainty in
the parameters appearing in the equations of motion in a quantitative manner.

The basic idea in the derivation here is that of Karal and Keller.® The resulting mean wave integro-
differential equation for the dynamics of the medium obtained in this paper is similar to those in non-local
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Figure 1. Geometry of the problem

continuum theories.” The correlation functions of the random medium which introduce long-range interac-
tions can be the sources of the wave amplification.

2. BASIC EQUATIONS AND ASSUMPTIONS

Consider wave propagation in a randomly non-homogeneous viscoeldstic semi-infinite medium. The
simplest equation which describes it is

dr 3w

—=pe N7 o)
with the constitutive equation
w 0w
1=E(z,7)— +§ﬁt82 ()

where w denotes the displacement, T the stress tensor, ¢ time, y the probability variable and z >0 is the space
variable. The damping coefficient ¢ is assumed to be constant and deterministic. The density of the medium,
p, and the modulus of elasticity, E, can be expressed as the sum of their average value and fluctuation

Pz, y)=pos(1+&(z, 7)) (3a)
E(z,y)=Eq(1+¢,(z, ) (3b)

where <p>=p01: <E>=E011 <81>=<82>=0'
The angular brackets (. are used for denoting the average value (mean value). It is to be noted that,
assuming Poisson’s ratio v=025, we have E,, =y, for shear waves and E,; =3y, for dilatational waves,

where p, denotes the average value of the shear modulus of the medium.’
If the excitation on the top of the medium is

™z, 1)]; =0 =T €xp (iw1) (4)
then in the steady state
w(z, 1) =w(z) exp (iwf) (5)
where w(z) is a complex function, and equations (1) and (2) can be written as follows:
d*w d/{ dw
Frel +qa2k2w+qd ( 2 >+qa2k281w==0 (6)
1dw dw
T"(Z)'—EOI ( dz "I'Ez 'a;) (7)

where q=1/(1+ix), x=Cy/Cy,, k=w/C;, k =La[E,,, Cor=+/ Eo1/pois C2=\/E2//)2



RESPONSE TO SURFACE HARMONIC EXCITATION 737

The modulus of elasticity E, and the density p, introduced in equations (6) and (7) will be explained in
Section 3 [see Figure 1 and equations (28) and (29)].
Introducing new variables

w=y,

dw

—— 8
dZ y2 ()

the second order differential equation (6) can be reduced to the following first order matrix differential
equation:

dy
3 =y el) ©)
z
where
0 1 Y1 0 d 512
A= = = =—q—(&,y,)—qe*k 10
l:_qazkz 0} y [yj’ g(y) Iigz()')j' g2(y) qdz("z}’z) qo K7€y Y1 (10)
Using the fundamental matrix® ®(z), which satisfies the condition
1 0
<1>(0)m[0 J (1)
one can write equation (9) in the form
Y(Z)=¢(Z)YO+J Bz —)g(y(C))dl (12)
0
where
dG
Y dz G
y«»=yos[)}],®&)= G (13a,b)
2 *qazsz el
dz
G(Z)=smh («/ —qokZ) (130)
N/ —qok
By virtue of integration by parts in equation (12) one obtains
dG =106 dw
w=—r Y +(1+4e,(0)GY, qu; ((—};sch%—azszslw)dC (14a)

dw dG dw [ dw 0G
o= ~qu*k?GY, +(1 +4e2(0) Yo —ger +qa2k2J0(ngzEE ~—~b;£1w) d¢  (14b)

Statistical averaging of equation (6) yields
d*(w)
dz?

dw

dz

-{~qoc2k2(w>+q—d—<a2 >+qa2k2<am')=0 (15)

dz

In obtaining the equations for the averaged displacement and stress the following approximation is
adopted:

(e Om)y =Kz =D (w@)  (,j=1,2) (16)
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where K;;(z—{}={&,(z)¢;({)) and ¢,(z) are stationary random functions. This approximation is equivalent to
the ‘local independence’ assumption of Bourret commonly employed in the literature, 10~ 12

By equations (14), (16) and (15) one can obtain the following integro-differential equation for the average
displacement:

2
(14 KaO) 02 4 gu () 4 B, ()Y, + By )V +
ok f " Le—0wD)ydr=0 (1)
4]
where
B6)= ~ g WK () (182
d dG 2,212 3.,21,2
B2(2)=*qzd—z(Kzz(Z)‘d’z")+q a’k K12(Z)G(Z)+q o“k*K,,(2)G(z) (18b)
d? G d
e ~0/=aKis (=0 Ble =0 gz = 2K sle—) G 5 —aPKKs, 0 Gle—) (189

The correlation function which has been used in a number of investigations and fits experimental data the
best!:2 1113 {5 the exponential function

Kijfz—0=0yexp(=plz—L]) (,j=1,2) (19)
where o;;=K,;;(0) denotes variance and 1/8>0 is the radius of correlation.

3. GENERAL SOLUTION

The solution of equation (17), by use of the Laplace transform?®

f*(P)=J (flz)ye™"dz (20)
0
can be written in the form
o Us(p) U,(p)
WHp)=—tn ¥V, + =25 ¥, 1
R GROTATRE )
where
Uz(ﬁ)=(1_512022)172+ﬁ(2“42022)ﬁ+ﬁ2+qa2(1*9‘712) (22a)
Ua(ﬁ)z(l—Qzﬂzz)ﬁs‘*‘zﬂ(l‘42022)ﬁ2+[ﬂ2(1—q2022)+q0‘2(1—4012)]ﬁ—3q2°‘20'12 (22b)
U4([3)=(1——qzcrzz)ﬁ4+2]f(l—42022)133-!—[3(1—q2022)+2qa2(1—q012)]§2
+2CJB“2(I—4012)ﬁ+ﬁqa2+‘12“4(1_0'11) (22¢)

All parameters in equations (22) are non-dimensional and B=p/k, p=p/k.

By the residue theorem and Jordan’s lemma'* ome obtains the inverse Laplace transform of equation
(21) as

!
wiz)r=Y,f; B+ Y2 f2(2) (23)
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where
& UB(ﬁn) ~
z)= ——-exp (P, kz) (24a)
S =1 U4(Pa)
& Uyl
L&)=Y, = exp (fykz) 24b
= 2, T ) P 24
A prime in this paper denotes the derivative and in equations (24) we use the notation
Lo dUL(p
v 4(pn)=—di~(32 (25)
P 5=,
Py (n=1, ..., 4) are the roots of the fourth degree polynomial equation with complex coefficients
U4(p)=0 (26)

Owing to the construction of the solution (23) a check on the calculation is possible at this stage. It should
be

[{0)=110)=
f10)=0, f3(0)=1 @7)

Now we assume that the solution (23) is valid only for 0 <z <h and the solution for the half-space z2 h will
be obtained from the deterministic equations

2

e +qk2w 0 (28)
E,dw
T(Z)_?E (29)

Using the radiation condition the solution of equation (28) takes the form

w=Y,exp(—./—qkz) (30)
where the square root, ./ —q, has the positive real value

J g E———= ! ( —14./1+%? 2+11+\/1~— ) (31)

21 +x?)
Averaging of equation (7) yields

1d{w) dw
e <zgh,
{t(z)) = Em(q iz +<82dz>) for O<z<h (32)
Substituting equations (14b) and (23) into equation (32) yields
<22)> (@)Y, +9,(2)Y, for 0<z<h (33)
01

where

z G
91(2)=é(1 ~q*K1,(0)) [ (2) + qo*kd L (QGKzzfl - K2 /1) )

oG

dG
gz(z)=é(1 "quzz(O))f'z(Z)’*'qK22_+qa2k L (QGKzzflz(Q—a—

P Klzfz(C))dC (34)
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Equations (29) and (30) yield
T(Z) E2 '—k
=Y, == ———exp(—./—qkz) for zz=h
Eqy ? Eyy / —q
4. SOLUTION OF THE PROBLEM

From the boundary condition (4} and equation (33) one obtains

Continuity conditions
(w(h ™)) =w(h*)
{eh™))=1(h")

and equations (23), (30), (33), (35) and (36) yield, after some straightforward but lengthy operations, the
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Figure 2. Distribution of the mean amplitude in the half-space for k=009, ¢=F =145, Typ=0,;,=0,,=0=0
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Figure 3. Distribution of the mean amplitude in the half-space, for f=5, k=005, a=£=1.5, f=10, F23=0,,=0, 6,,=0
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solution for the average displacements in dimensionless form

Eor ) (o {Fo¢1(5)+q¢2(5), 0<ixl
S0y =
%o ey (Fod1(+q¢a(1) exp (—/ ~ghE—-1)), =1

where

~ US( n)
““)nﬁwumn
(52)

U
$,(8)= n; Uz(ﬁn)

¢i()=d(B)=y (=1,2)
Fom EJﬁ—@_ l—qan¢(n+qawz+#wo
~\[ q q(lh‘q 732)¢1 (1) +qo* ¥,

exp (7,h7)

exp (7,hZ)

s U3(~n)
= ~ S n_S "
=L Ty S
s UZ([jn)
= n"'S n
2 "Zl Uit(ﬁn)( : : )
/1 ¢ . exp (7,h) —exp (( /7+o¢~/
Spw=z| = G220y —0y3
2\2 ) pn+ﬁ—'d\/ -
S _1(1 4 oito ) xp (f, 1) —exp( oc\/
2n— U220 2
2 d\/._.q 1 pn+B+a‘\/ -
s ~ U3(ﬁn) a~ I
[ — i
d)l( ) nZl pn U:;(ﬁ,,) ([7,,1)
' ad ~ U (~Il
d)z(l)z Z p 2(p )) p(pnh)
Ny “(exp (=f+a/—gh)+exp (- f—a/—g)))
B2
h()l

5. NUMERICAL RESULTS AND DISCUSSION
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The harmonically loaded viscoelastic medium, which is considered in this paper, is a randomly non-

homogeneous layer over-lying a homogencous half-space.

In the paper we assume that the modulus of elasticity E(z,7) and the density p(z, ) of the layer are
stationary random functions, which are approximately described by the mean values E;, and p,, and
correlation functions Ky;{z—{), (i.j=1, 2). In obtaining the equations for the averaged displacement and
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stress the Bourret approximation [equation (16)] is adopted. To obtain numerical results the exponential
correlation functions have been used [equation (19)]. Equation (39) provides the solution fgr average
displacements through the non-dimensional parameters. g;;, 011, 012, B=plk, k, a=C,/Cqy, E=E,[E,,,
fi=kh and #=z/h. The solution is expressed in terms of the complex number g=(1—ik)/(l +x?*) and the
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Figure 4. Effect of variance on the mean amplitude for Z=03, f=50=E=15Fk=10,00,=0,,=0, 6;3,=0
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Figure 5. Distribution of the mean amplitude in the half-space for F=5 k=009, a=E=15k=10,0y,=0,,=0,,=0
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Figure 6. Effect of variance on the mean amplitude for =05, f=5a=E=15,h=10,0,,=0,,=0,3=0



RESPONSE TO SURFACE HARMONIC EXCITATION 743

complex roots of equation (26) f,=p,/k (n=1,2, 3,4). It is to be noted that the [BM Manual of Scientific
Packages has programs for finding the roots of polynomials with complex coefficients.!® Numerical results
which demonstrate the effect of the randomness of medium parameters on the mean wave propagation are
presented here in terms of the non-dimensional mean displacement amplitude

<A(5)>=]i—(:~ k(I<W(Z~)><W(2”)>*)% (41)

where the star denotes the complex conjugate number, As expected, the mean wave in the stochastic case,
a;;#0, is damped more rapidly with depth # than the case of the deterministic medium, ¢;;=0 (see Figures 2
and 3). In Figures 3 and 4 it is observed that the effect of the inhomogeneities gets stronger as the variance
increases. However, this conclusion is true only when the non-dimensional material parameters &,(z, y) and
£,(z, y) are uncorrelated, o, =0. If we admit parameters ¢, and ¢, whose fluctuations are correlated, g, 0,
the effective behaviour of the mean wave can differ considerably from the above results (see Figures 3 and 5).
From a study of Figures 6, 7 and § it is seen that the case of correlated fluctuations of parameters gives rise to
amplification of waves for some region of variance ¢, and a high peak for some value of ¢« 1. If the variances
a5, and o, are greater than one, o > 1, the solutions for the mean displacements have similar peculiarities for
the case of oy, #0 as well as for o,, =0. The mean wave is damped with depth very strongly for o> 1 (see
Figures 3, 4, 5 and 6). Figure 8 shows the effect of correlation length, 1/f, on the mean displacement
amplitude in the middle of the layer, =05. It can be seen that a high peak exists for some value of f.
On the contrary, as in Figure 2, Figure 9 shows an increase of the amplification waves with increasing non-
dimensional frequency = kh. An important numerical result of this paper is that, in the case of correlated
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Figure 7. Effect of variance on the mean amplitude for # =0, f=5a=E=15 f=10, G120, =0,,=0
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Figure 9. Distribution of the mean amplitude in the half-space for F=5k=009, a=E=150,,=0,,=0,,=0=05

fluctuations of parameters of the random medium, the modulus of elasticity and the density, one obtains
wave amplification for some region of variance. The method presented here provides a tool for accounting
quantitatively for the mean properties of wave damping in a viscoelastic semi-infinite random medium.
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